Cosmic Microwave Background Data Analysis

Julian Borrill
Computational Cosmology Center, LBL
& Space Sciences Laboratory, UCB

CMB Data

- Looking for the wallpaper not the furniture.
- Scanning rather than pointed observations.
- Data components are separately correlated
 - Noise in time domain
 - Foregrounds in pixel domain
 - CMB in multipole domain
- Entire data set is a single data object
 - No divide & conquer approach
 - MTBF issues!
- No database of objects/images, just a handful of maps.

Analysing The CMB

CMB Satellite Evolution

Evolving science goals require (i) higher resolution & (ii) polarization sensitivity.

The CMB Data Challenge

- Extracting fainter signals (polarization, high resolution) from the data requires:
 - larger data volumes to provide higher signal-to-noise.
 - more exacting analyses to control fainter systematic effects.

Experiment	Start Date	Goals	N _t	N_p
COBE	1989	All-sky, low res, T	10 ⁹	10 ⁴
BOOMERanG	1997	Cut-sky, high-res, T	10 ⁹	10 ⁶
WMAP	2001	All-sky, mid-res, T+E	10 ¹⁰	10 ⁷
Planck	2009	All-sky, high-res, T+E(+B)	10 ¹²	10 ⁹
PolarBear	2012	Cut-sky, high-res, T+E+B	10 ¹³	10 ⁷
QUIET-II	2015	Cut-sky, high-res, T+E+B	10 ¹⁴	10 ⁷
CMBpol	2020+	All-sky, high-res, T+E+B	10 ¹⁵	10 ¹⁰

- 1000x increase in data volume each over past & future 15 years
 - need linear analysis algorithms to scale through 10 + 10 M-foldings!

Computational Challenge

- Data volume drives us to (log-)linear algorithms
 - FFT, SHT, PRNG, sparse MV & Monte Carlo everything.
 - Minimal data reuse (Level 1) so no room to hide non-calculation costs
- Hierarchy of costs (time, power)
 - Data transfer/staging > I/O > Communication > Calculation
- Cost per byte/flop decreases with time/concurrency but ratios get worse.
- HPC systems are increasingly heterogeneous & hierarchical
 - keeping up with Moore gets harder and harder.
 - compilers/libraries aren't the (whole) answer.

Keep data as close to the cycles as possible.

Replace IO with communication, communication with calculation.

CMB Data Analysis Evolution

Data volume & computational capability dictate analysis approach.

Date	Data	System	Мар	Power Spectrum	
1997 - 2000	B98	Cray T3E x 700	Explicit Maximum Likelihood (Matrix Invert - N _p ³)	Explicit Maximum Likelihood (Matrix Cholesky + Tri-solve - N _p ³)	S
2000 - 2003	B2K2	IBM SP3 x 3,000	Explicit Maximum Likelihood (Matrix Invert - N _p ³)	Explicit Maximum Likelihood (Matrix Invert + Multiply - N _p ³)	Algorithms
2003 - 2007	Planck SF	IBM SP3 x 6,000	PCG Maximum Likelihood (band-limited FFT – few N _t)	Monte Carlo (Sim + Map - many N _t)	P
2007 - 2010	Planck AF EBEX	Cray XT4 x 40,000	PCG Maximum Likelihood (band-limited FFT – few N _t)	Monte Carlo (SimMap - many N _t)	ntations
2010 - 2014	Planck MC PolarBear	Cray XE6 x 150,000	PCG Maximum Likelihood (band-limited FFT – few N _t)	Monte Carlo (Hybrid SimMap - many N _t)	Implementations

Scaling

Heterogeneous HPC Systems

- Clock speed is no longer able to maintain Moore's Law.
 - multi-core CPU, GPGPU, ...
- E.g. NERSC's new XE6 system *Hopper*
 - 6384 nodes
 - 2 Magny Cours processors per node
 - 2 NUMA nodes per processor
 - 6 cores per NUMA node
- What is the best way to run hybrid code on such a system?
 - "wisdom" says 4 processes x 6 threads to avoid NUMA effects.

NUMA vs MPI

Conclusions

- Not all data are images; not all projects end up in a database!
- Data volumes require algorithms with minimal data re-use
 - no room to hide computational inefficiencies.
- Hierarchy of (time, power) costs drives implementation approach
 - cost ratios get worse with concurrency/generation.
- Heterogeneous/hierarchical architectures add an additional layer (or more) of complexity
 - the responsibility to address this lies with us.
 - (how best) can we influence the degree of the challenge?

